

GCE PHYSICS

S21-A420QS

Assessment Resource number 14 Electricity and the Universe Resource E

(a)	Two parallel plate capacitors, X and Y, have equal plate areas. The capacitance of X is greater than the capacitance of Y. Suggest two possible reasons for the difference. [2]

(b) The diagram shows an arrangement of 3 capacitors.

	[3
•••••	
•••••	
•••••	

(ii)	Ex	xplain why:	
		pd across $C_2 = 1.5 \times pd$ across C_3 .	[2]
	(iii)	Hence, calculate the pd across C_3 given that 100 V is applied between	A and B. [1]
	(i. A	Eveloin which of the three consistent atoms the greatest sharms and a	alaulata tha
	(iv)	Explain which of the three capacitors stores the greatest charge, and of size of this charge.	[2]
(c)	store of al effic	6 mF capacitor is charged from a 300 V d.c supply. Engineers wish to use ed in this capacitor to heat a small coil embedded in a thermally insuluminium of mass 0.10 kg. It is required that the heating process be a cient. Experiments show that when the capacitor is discharged through perature of the block increases by 0.60 K.	ulated block t least 80%
	Dete [Spe	ermine whether this method of heating meets the efficiency specified. ecific heat capacity of aluminium, $c = 910 \mathrm{Jkg^{-1}K^{-1}}$].	[5]

.....

2

(b)	Superconductors are used in MRI scanners and particle accelerators. Consider which of these two applications has been of greater benefit to society. [3]

(a) The bar in the figure below is made from a **single piece of metal**. It consists of two parts of equal length L_0 and cross-sectional area A and 3A. The diagram is not drawn to scale.

(i) Show that the total extension, $\Delta x_{\rm total}$, of the bar under the action of an applied force, F, as shown in the diagram, can be given by:

$$\Delta x_{\rm total} = \frac{4FL_0}{3AE}$$

wh	ere E represents the	e Young modulus of the metal in the bar.	[3]

(ii) The graph shows the variation of extension with applied force for the part of cross-section, A. Draw (on the same grid) the expected force-extension graph for the segment of cross-section 3A.
[1]

and [3]

(iv)	Calculate the elastic potential energy stored in the whole bar when $F = 400 \mathrm{N}$. [2]	

(b) Glass is a brittle material. The graph shows how the breaking stress of glass, in the form of thin fibres and rods, varies with the diameter of the fibre.

Breaking stress / GPa

(i) Use the graph to estimate the greatest mass which can be hung from a glass fibre of diameter 0.2 mm. [3]

(ii)	Explain the term <i>brittle fracture</i> as it applies to glass and give a reason why very thin fibres have a greater breaking stress than thicker ones. [2]	